

Modesto Subbasin GSP Surface Water-Groundwater Model Development

TECHNICAL ADVISORY COMMITTEE (TAC) MEETING

Presented on May 13, 2020

Agenda

- Model Development
 - Modesto Area Refinements
- Model Calibration
 - Stream-Aquifer Interaction
 - Aquifer Calibration Statistics
 - Hydrographs

- DRAFT Water Budgets
 - Land & Water Use Budgets
 - Stream-Aquifer and Subsurface Flows
 - Groundwater Budgets
- Next Steps

MODEL DEVELOPMENT

MODEL DEVELOPMENT PROCESS

GROUNDWATER

NUMERICAL MODEL PLATFORM

- Integrated Water Flow Model (IWFM)
- Developed and Supported by DWR
- Will be used by DWR to evaluate GSPs
- Used in numerous basins throughout the state including the Turlock and Eastern San Joaquin Subbasins.
- Recommended by DWR for SGMA and GSP Development

IWFM IN THE CENTRAL VALLEY

Grid Statistics

- 30,179 Nodes
 - Agency Boundaries
 - I/4 Mile Discretization
- 32,537 Elements
 - Ave. Size = 400 Acres
- IIO Stream Reaches

C2VSIMFG IN THE MODESTO SUBBASIN

Grid Statistics

- 694 Nodes
 - Agency Boundaries
 - I/4 Mile Discretization
- 767 Elements
 - Ave. Size = 362 Acres
- 3 Stream Reaches

BASIC MODEL FEATURES

- Historical Period: 1922-2015
- Calibration Period: 1991-2015
- Hydrogeologic Layering:
 - 4 Basic Model Layers
 - 3 Principal Aquifers
 - I. Upper Aquifer, above Corcoran to the West
 - 2. Lower Aquifer, below Corcoran to the West
 - 3. One Principal Aquifer to the East
- Hydrologic Features:
 - Stanislaus, Tuolumne, and San Joaquin Rivers

Modesto Subbasin Water Agencies

- Agricultural Agencies
 - Modesto ID
 - Oakdale ID
- Simulated Urban Areas
 - Modesto
 - Oakdale
 - Riverbank
 - Salida
- Simulated Rural Areas
 - DAU: 206
 - DAU: 207

Soil Types & Root-Zone Parameters

- Source: USDA NRCS
- Input Parameters
 - Field Capacity
 - Wilting Point
 - Total Porosity
 - Hydraulic Conductivity
 - Pore Size Distribution
 Index

Root-Zone Parameters

	Wilting Point	Field Capacity	Porosity	Pore Size Distribution Index	Hydraulic Conductivity ^I
clay loam	0.211	0.350	0.439	0.15	0.3
sandy clay loam	0.153	0.261	0.397	0.16	7.8
loam	0.120	0.241	0.392	0.18	9.9
sandy loam	0.077	0.158	0.384	0.37	19.2
loamy sand	0.022	0.081	0.400	1.02	29.7
sand	0.005	0.038	0.424	2.65	36.7

¹ Units of hydraulic conductivity are in feet per day

LAND USE AND CROPPING PATTERNS

Available Data

- DWR County Surveys
- DWR Statewide
 - (LandIQ) Land Use
- USDA CropScape
- MID/OID AWMP

LAND USE AND CROPPING PATTERNS

Land Use	2015 Acres	
Orchards	64,751	
Pasture	14,557	
Corn	21,053	
Vineyards	4,160	
Grain	4,257	
Alfalfa	3,203	
Rice	563	
Other	6,253	
Total Ag.Acreage	118,797	
Native	95,712	
Urban	30,754	
Refuge	0	
Total	245,263	

Evapotranspiration

Data Sources

- Irrigation Training and Research Center (ITRC)
- METRIC Remote Sensing (9 Years)
- MID & OID AWMPs

SURFACE WATER SUPPLY

Agricultural

189,569AFY

OID-N

OID-S

MID

76,921AFY

- 123,570 AFY
- OID-T₍₂₀₁₄₊₎ 3,430 AFY

Riparian Surface Water

- Stanislaus I 6,520 AFY
- Tuolumne 5,858 AFY
- Municipal Surface Water
 - MOD₍₁₉₉₅₊₎
- 20,841 AFY

PRODUCTION WELLS IN THE MODESTO SUBBASIN

320 Simulated Wells

- I73 Ag Wells
 - MID: 141
 - OID: 32
- I47 Urban Wells
 - Modesto: 120
 - Riverbank: 11
 - Oakdale: 10
 - Waterford: 6

Note: This map only includes agency pumping, private agricultural and domestic groundwater production is simulated at each element

PRODUCTION WELLS IN THE MODESTO SUBBASIN

Agricultural

- MID₍₁₉₉₀₊₎
- OID₍₂₀₀₁₊₎

21,697 AFY 4,876 AFY

- Municipal
 - Modesto₍₁₉₉₅₊₎
 - Oakdale₍₁₉₉₅₊₎
 - Riverbank₍₂₀₀₆₊₎
 - Waterford₍₂₀₀₅₊₎

37,329 AFY 4, 570 AFY 4,329 AFY 1,643 AFY

URBAN WATER SUPPLY

Available Data

- Groundwater records
- Surface water records
- Extrapolated early years
- Verified with UWMPs

Note: Urban Water supply does not include domestic wells or small water systems

*Hatch indicates extrapolated data

MODEL CALIBRATION

Model Modules Inter-Relationship

CALIBRATION PROCESS

Calibration Goals:

- Produce reasonable and defensible water budgets
- Match simulated and observed hydrographs at target wells
- Match simulated and observed streamflow at gaging stations
- Develop reasonable parameters for land surface processes.
- Refine hydrologic parameters for calibration of stream/aquifer systems
- Integrate model modules (IDC and IWFM) to balance land surface and groundwater processes

Modeling Uncertainties

Structural Uncertainties

- Theoretical Concepts and Representation of the Natural and Physical System
- Formulation, Code Development,
 Solution Techniques and Assumptions
- Representation of Physical Features
- Model Spatial and Temporal Resolution

Data Uncertainties

- Data and Information Accuracy, Data Gaps and Estimations
- Data Spatial and Temporal Resolution

Calibration Uncertainties

- Calibration Approach, Target Characteristics, Accuracy
- Estimates of Hydrologic and Hydrogeologic Parameters

Projection Uncertainties

- Primarily due to Data Projections and Forecasting Methods on:
 - Land Use and Population
 - Water Supply Conditions
 - Climatic Conditions

Model Limitations

- Spatial resolution and grid size relative to:
 - Physical features (e.g., streams, geologic conditions, jurisdictional boundaries, land surface topography, etc.)
 - Operational features (e.g., wells, canals, land parcels, etc.)
- Spatial and temporal resolution of data
- Data gap analysis
- Modeling a complex physical system

AWMP COMPARISON

LAND & WATER USE BUDGET

STREAMFLOW GAUGES USED IN MODEL CALIBRATION

STREAM HYDROGRAPHS

Stanislaus River at Ripon

STREAM HYDROGRAPHS

San Joaquin River at Vernalis

STREAM HYDROGRAPHS

San Joaquin River near Patterson

STREAM-AQUIFER INTERACTION

STREAM-GROUNDWATER INTERACTION

Groundwater Gain from Stanislaus River (+)

CALIBRATION WELL SELECTION

Considerations:

- Period of Record
- Number of observations
- Construction information
- Dedicated monitoring
- Minimal outliers

65 Calibration Wells

GROUNDWATER HYDROGRAPHS (EXAMPLE)

Western Upper Principal Aquifer (Above Corcoran)

Western Upper Principal Aquifer (Above Corcoran)

Western Upper Principal Aquifer (Above Corcoran)

Western Upper Principal Aquifer (Above Corcoran)

Eastern Principal Aquifer

Eastern Principal Aquifer

Eastern Principal Aquifer (Multiple Hydrogeological Formations)

Western Lower Principal Aquifer (Below Corcoran)

Model Groundwater Level Contours

 Period: Sep 2015
 Principal Aquifers: Western Upper (Above Corcoran) and Eastern (Shallow Zones)
 San Joaquin Valley Water Year Index:

Critical

Groundwater levels are listed as feet above MSL

Model Groundwater Level Contours

Period: Sep 2015 Principal Aquifers: Western Lower (Below Corcoran) and Eastern (Deeper Zones) San Joaquin Valley Water Year Index: Critical

Groundwater levels are listed as feet above MSL

UPPER AQUIFER PARAMETERS

	Horizontal Hydraulic Conductivity ^I	Specific Storage	Specific Yield	Corcoran Vertical Conductivity ^I	Aquifer Vertical Conductivity ^I
Minimum	12.11	1.71E-06	0.0500	0.0010	0.0500
First Quartile	24.97	3.72E-05	0.1010	0.0050	0.3194
Average	41.96	7.11E-05	0.1430	0.0081	0.4084
Third Quartile	84.30	9.14E-05	0.1789	0.0148	0.6500
Maximum	100.00	1.00E-04	0.2000	0.0615	7.0000

¹ Units of hydraulic conductivity are in feet per day

LOWER AQUIFER PARAMETERS

	Horizontal Hydraulic Conductivity ^I	Specific Storage	Specific Yield	Corcoran Vertical Conductivity ^I	Aquifer Vertical Conductivity ^I
Minimum	6.81	2.21E-06	0.0500	0.0006	0.0149
First Quartile	15.19	4.44E-05	0.0983	0.0034	0.1721
Average	25.26	8.44E-05	0.1369	0.0050	0.2576
Third Quartile	39.18	1.00E-04	0.1695	0.0151	0.4017
Maximum	68.18	1.00E-04	0.2000	0.0560	2.3863

¹ Units of hydraulic conductivity are in feet per day

WATER BUDGETS

RECHARGE/EXTRACTION

Deep Percolation: All percolation resulting from precipitation and applied waters across ag, urban, and native lands. **Canal and Reservoir Recharge:** Canal and reservoir seepage from Modesto and Oakdale Irrigation Districts and riparian surface water diverters.

Net Recharge

STREAM-GROUNDWATER INTERACTION

INTER-SUBBASIN FLOW

GROUNDWATER BUDGET

NEXT STEPS

- Address comments on model calibration, as appropriate
- Coordinate with local subbasins
- Develop baseline model simulations
- Analyze groundwater sustainability management scenarios

QUESTIONS?

